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Abstract-Fault-propagation folding commonly occurs near the fronts of mountain belts. This type of folding may 
even represent, in some thrust systems, the major mode of deformation. However, fault propagation folds are 
frequently altered by two kinds of late-stage evolution: breakthrough thrusting or transport on the flat. We model 
the geometric features of these kinds of fold, in particular the late stage modification, and present the algorithms 
and equations used in an original program. An application, based on an example from the Atlas mountains of 
Algeria, illustrates the main features of the model. 0 1997 Elsevier Science Ltd. All rights reserved 

INTRODUCTION 

The main kinematic feature of a fault-propagation fold 
(FPF) is that folding and faulting occur synchronously. 
At each stage, during fault propagation, slip is comple- 
tely accommodated by folding with no transfer of slip out 
of the fold, and it is zero at the ramp tip. The fold 
develops immediately above the ramp, which remains 
blind (Thompson, 198 1). This geometry is usually clearly 
different from that of a fault-bend fold (Fig. 1). The fault- 
propagation fold model is put forward as an explanation 
for the common association of asymmetric folds with 
steep or overturned forelimbs adjacent to thrust faults. 

Suppe and Medwedeff (1984) and Suppe (1985) 
established the geometric characteristics of fault-propa- 
gation folding. Subsequently, some typical structures of 
this type have been identified in fold-and-thrust belts 
(Jamison, 1987; Mitra and Namson, 1989; Mitra, 1990; 
Suppe and Medwedeff, 1990; Alonso and Teixell, 1992; 
Mitra, 1992), and it has now been demonstrated that in 
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Fault-bend fold (mode II) The model proposed is a forward kinematic model. It 

1. The three main types of fold-thrust interactions (Suppe, 1983, consists of calculating the change in geometry resulting 
1985). from the transport on the new fault. 

some thrust systems, fault-propagation folding repre- 
sents the major mode of deformation (Mercier, 1992; 
Philippe, 1994; Outtani et al., 1995; Martin and Mercier, 
1996). However, in these areas, many natural folds with 
steeply-dipping forelimbs, exhibit later faulting that 
commonly breaks through the fold and obscures the 
original shape. It appears that the initial ideal geometry 
of FPF can be altered by a late-stage evolution, including 
hangingwall transport, that prevents an immediate 
identification (Suppe and Medwedeff, 1990; Mercier, 
1992; Mercier et al., 1994, 1995). 

At any instant, fold growth may stop and subsequent 
fault propagation may cut through the fold itself. 
Following Jamison (1987), Suppe and Medwedeff 
(1990) and Mercier (1992), we will consider two families 
of sites for the development of breakthrough faults (Fig. 
2). The first possible sites are located along the ramp. 
From these sites, ‘steep-limb breakthrough thrusts’ 
(Suppe and Medwedeff, 1990; Creuzot et al., 1993) are 
developed, cutting through the forelimb of the previously 
built fold-propagation fold. The second possible sites are 
situated along inter-bed planes branching from the ramp 
tip. In this case, the slip on the new flat fault segment 
produces a ‘transported FPF’ resulting from transport on 
the flat of the previous FPF (Jamison, 1987; Mercier, 
1992; McClay, 1992). This type of evolution corresponds 
to the ‘dCcollement breakthrough structure’ defined by 
Suppe and Medwedeff (1990). 

This paper develops original quantitative models for 
the late stage evolution of FPF. The fundamental 
equations used to compute the shapes of the resulting 
structures are developed below. The main geological 
implications of this model are discussed based on a cross- 
section from the Atlas Mountains of Algeria. 

PRINCIPLES OF MODELLING 
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Simple step 
propagation of 
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(slip accommodated) 

lnterbed plane branched 
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considered in our models 
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Post-blockage evolution 
(slip non accommodated) 

Fig. 2. Simple-step fault-propagation fold and the two kinds of late-stage modification. These were developed using the 
procedures described in this paper. 

Geometry of a simple-step fault-propagation fold 

Classically, it is assumed that area is preserved in the 
plane of the cross-section parallel to the transport 
direction. This hypothesis reduces the principle of mass 
and volume conservation to a two-dimensional problem. 
If it is also assumed that the thickness of beds is preserved 
between initial and final deformed states, the axial 
surface (kink-plane) bisects the angle between the two 
limbs of each hinge. In this case, the modelling of a FPF 
requires determination of the kink plane location (Suppe, 
1983; Jamison, 1987). For this purpose, we must 
compute, for each kink, the dip of the axial plane and 
the precise location of one point on it. Finally, we need to 
know (Fig. 3): 

(a) The location of the point B (ramp base); its 
coordinates (xB and yB) are input parameters in our 
models. (Note that here, and in all ensuing models, XP 
and yP are the horizontal and vertical coordinates of any 
point P.) 

(b) The other input parameter is the value of the ramp 
angle (a). Angles y and 6 (see Fig. 3) depend on a; from 
Suppe (1985) these angles are related according to: 

6=y+a, (1) 

l/tan(a) + 2tan((r/2) = 2/tan(y/2) - l/tan(v). (2) 

No trivial solutions are available for the second 
equation. However, if the trigonometric identity: 

tan(x) = 2tan(x/2)/(1 - tan2(x)/2) (3) 

recast in terms of CI and y, is substituted into equation (2) 
and rearranged, we find two possible solutions for y: 

+r-CY, (4a) 

(y = 2 arctan(3 tan;). (4b) 

By combining equations (1) and (4a) we obtain 

s = (n - a) + a! = X. 

The first solution (eq. 4a) is the pre-folding equation 
and the second (eq. 4b) is typically the post-folding 
equation. Figure 4 shows curves relating cx and y 
according to the second solution. 
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Lx 
B = locatmn of ramp base (xB,yB) 

D = accommodated displacement 

T = location of ramp top (xT.yY) 
h = ramp heaght 

I = bifurcation point of ant~clmes binges (xI.yI) 
I?. = ramp angle 

T = prqectmn of point T on the hinge of 
y= mrerlunb angle 

the back \ynclme (XT ‘,yT ‘1 6 = forelimb charactenstic dip angle 

Fig. 3. Model of fault-propagation fold showing the parameters used in 
equations (1) to (9). 

(c) The coordinates of the points T (ramp top), and I 
(bifurcation point of the anticlinal hinges) (Fig. 3) are 
related as: 

xT=xB+ 
h 

tan(o) ’ 
(54 

For balancing purposes it is important to know the 
value of displacement accommodated by the fold (D). It 
is equal to: 

D = [TI] + [IT’] - [TT’], (7) 

where: 

XT’ = xB - h/tan 

yT’=yB+h. 

From (7), (8a) and (8b), we have: 

D = h 1 + cos(y) 

[ 

1 - cos(a) 
sin(v) - sin(a) 1 ’ 

The above equations permit us to model each kink- 
plane for the fold. In this model, the planes bisect the 
angle between the two limbs of each fold. So, it is easy to 
draw any inter-bed if its original stratigraphic elevation 
above the lower decollement is known. Very simple 
geometric analysis permits locating the post-folding 
intersections of the inter-beds and the kink-planes. Note 
that if the inter-bed is stratigraphically above the ramp 
top, it is continuous from hangingwall to footwall. For 
beds situated below the ramp top, truncation by the ramp 
is predicted (Fig. 3). 

yT=yB+h, (5b) 
Fault-propagation fold transported on the flat 

xI=xT+ (h.3) 

yI =yT+ (h.2). (6b) 

Where h is the ramp height. Note that point I is on the 
same stratigraphic horizon as point T. 

1 / -__.__ __.___- _ _________ ____ _________---_--.- ________________ 

0 10 20 30 40 50 

Fig. 4. Graph of ramp angle (cx) versus interlimb angle (7) according to 
equation (4b). 

@a> 

@b) 

(9) 

Transport on the flat occurs when the fault reaches and 
follows a new decollement level rather than continuing to 
propagate through the fold. The slip generated along the 
upper flat is totally transferred to the front of the 
structure; a new input parameter is consequently intro- 
duced in the model: the value of ‘non-accommodated’ 
slip (D*). During subsequent slip in the foreland 
direction, a new upper ramp hinge is formed. The part 
of the fold that was already located in front of the new 
active hinge (kink x) forms a ‘residual’ fold (Jamison, 
1987) that undergoes a rigid-body translation (Figs 2 & 
5). The backlimb that is transported through this active 
anticlinal hinge undergoes a bending parallel to the fault. 
But the problem is more complex for the portion of the 
forelimb which is initially located behind the hinge X 
(grey area in Fig. 5). These beds have an initial angle of 
cut-off against the ramp (rc - 7) of > 50” and must be 
transported through an anticlinal hinge which is related 
to a change in fault dip (a) of generally > 10”. Suppe 
(1983, fig. 7) showed that a parallel folding (constant 
thickness folding) solution does not exist for such a 
geometric situation. In other words, the beds of the 
forelimb portion transported through this anticline hinge 
must undergo non-parallel folding and a geometric 
alteration. Following Jamison (1987) and Mercier 
(1992), we assume that the axial plane of the kink fixed 
at the top of the ramp (kink X) bisects the angle between 
the ramp and the inter-bed activated as a slip-plane. As a 
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Future kink X \ 

Residual fold 
(without geometric 

are thickened 

6* = altered forelimb characteristic dip angle 

D* = non-accommodated displacement 

Fig. 5. Model of fault-propagation fold transported on the flat showing the parameters used in equations (10) and (11) 

consequence of the requirement that the altered portion 
of the forelimb remains constant in area, the original 
forelimb beds situated between kinks X and X’ will have a 
smaller characteristic dip angle (6*) and will be thicker 
than the forelimb beds of the residual fold. The altered 
forelimb dip (6*) and altered thickness (ef), expressed as 
percentage change (T), are given by (modified from 
Mercier, 1992) as: 

6* = arctan 

( 

1 

& - 2 tan(G) 1 ’ 
(10) 

t= l()()ef-ei --- lOO(1 -S). (11) 
ei 

Note that by combining equations (4b) and (lo), and 
equations (4b), (10) and (11) we could simply obtain the 
relationships between 6* and u, and z and CI, respectively. 
These relationships are shown in Fig. 6. We emphasize 
that this geometric analysis is viable only if the dip of the 
forelimb is less than the dip of the kink fixed at the top of 
the ramp (Fig. 5). This assumption requires that the ramp 

angle be less than 30”, which is the upper limit of our 
model. 

Figure 6 shows that the difference between 6 and 6* is 
generally insignificant. Consequently, and in contrast to 
Jamison’s suggestion (1987), expressed again by Mitra 
(1990) and Anderson (1996) for example, the portion of 
FPF that moves through the upper ramp hinge will be 
geometrically different from a mode II fault-bend fold 
with the same ramp angle (Fig. 7). 

The assumptions about the dip of the hinge fixed at the 
top of the ramp combined with the previous model 
(simple-step FPF), permit the equating of pre-‘transport 
on the flat’ intersections between the inter-beds and the 
kink-planes. Additionally, the input parameter ‘non- 
accommodated slip’ (D*) permits derivation of these 
pre-transport locations to post-transport locations mod- 
elling a transport parallel to the thrust (Fig. 5). 

Breakthrough fault-propagation folds 

The breakthrough process occurs when the ramp 
propagation halts and a new fault segment develops, 
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Fig. 6. Graph of ramp angle (cz) versus forelimb dip (6) in the residual 
fold, and forelimb dip (6*) and the thickness ratio (r) in the altered 

forelimb according to equations (1) (4b), (10) and (11). 

cutting through the fold. As a consequence of the slip on 
the new fault segment, a characteristic and distinctive 
fault-bend fold is produced and the FPF is altered by the 
thrust cutting through the fold (Suppe and Medwedeff, 
1990) (Fig. 2). In our model, in accord with natural 
examples, the breakthrough thrust fault always cuts the 
forelimb of the fold. This corresponds to the classical 
concept of ‘forelimb thrusts’ (Dahlstrom, 1970; Butler, 
1982). This implies that the thrust fault branches off from 
a place on the ramp between the synclinal and the 
anticlinal axial surfaces, including the limiting case 
where the thrust branches at the ramp tip and follows 
the synclinal axial surface (synclinal breakthrough) (Figs 
2 & 8). 

Geometrical analysis and modelling follow very simi- 
lar lines to those described above for transport on the flat, 
but three new input parameters must be introduced: the 

+ residual fold f 

Fault-propagation fold transported on the flat 

Fault-bend fold (mode II) 

Fig. 7. Sketch showing that the altered portion of a fault-propagation 
fold is quite different from a fault-bend fold mode II (with the same 

ramp angle). 

value of non-accommodated slip (D*), the location where 
the new fault branches off, and the dip of this new fault 

(4). 
As slip on the new fault segment takes place, in a 

manner analogous to transport on the flat, the axial plane 
of the new fold is fixed at the point of intersection of the 
new fault segment and the ramp. Moreover, the new fault 
cuts forelimb strata and individual hangingwall cut-off 
points and hinge points can be computed and modelled as 
previously. The parts of the fold that were already located 
ahead of the new active hinge (X) are transported, 
without alteration (Fig. 8). As in the case of transport 
on the flat, the part of the backlimb that is transported 
through the active synclinal hinge undergoes a bending 
parallel to the fault, and only the portion of the forelimb 
that is transported through this active hinge (grey area in 
Fig. 8) undergoes geometric alteration. 

As the active hinge is synclinal, the problem of 
geometric alteration is very different to that explained 
for transport on the flat. The initial cut-off (7~ - y) and 
change of fault dip (a) are the same, but Suppe (1983, fig. 
7) has shown that a solution exists of parallel folding for 
such a situation. In other words, the beds of the forelimb 
portion transported through this active hinge (x), could 
undergo parallel folding. However, as illustrated and 
discussed in Mercier and Mansy (1995), a few natural 
examples of forelimbs transported through active syn- 
clinal hinges undergo shearing and thinning in agreement 
with the theoretical prediction of the ‘bissectrix theory’ 
(Mercier and Mansy, 1995). Thus, as for transport on the 
flat, we assume here that the kink fixed at the intersection 
of the ramp and the new fault bisects the angle between 
the two faults. As a consequence of the requirement that 
the altered portion of the forelimb remains constant in 
area, the beds in this portion will have a greater 
characteristic dip angle (a*) and be thinner than else- 
where (Fig. 8). 

The altered forelimb dip (6*) and altered thickness (er), 
again expressed as a ratio, are given by: 

S* = &J + arctan ( sin(y) cos y 
( > 

2 cos(y - 9) - cos(y) c,,(v) 
1 ’ 

(12) 

r= &cf-& 1oo 

ef ( sin@* - 4) 
sin(v) 

-1 . 
> 

(13) 

Note that by combining equations (4b) and (12), and 
equations (4b), (12) and (13) we obtain relationships 
between 6* and CC, and z and CC, respectively. These are 
graphed in Fig. 9. 
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Future kink X 

.rea where beds 
are thinn ed 
(ratio\ = 2) 

6* = altered forelimb characteristic dip angle N = location of the new fault base (xN,yN); 

D* = non-accommodated displacement the value [NT] is a input parameter of our model 

Q, = new fault angle 

Fig. 8. Model ofa fault-propagation fold in which the forelimb is cut by a breakthrough thrust showing the parameters used 
in equations (12) and (13). 

APPLICATION TO A NATURAL EXAMPLE 

Assumptions and use of the model 

From a general point of view, our models follow the 
‘Suppe method’ (Suppe, 1983) for drawing balanced 
cross-sections. This means that an application will be 
reliable only if the positions of some points are con- 
trolled. First, the folding style must be kink-like. Second, 
strata1 thicknesses and lengths must remain constant 
through fold growth. We have seen, however, that, 
motived by theoretical considerations and/or natural 
examples, the models relax the classical constraint of 
constant thickness in very small zones situated in the 
forelimb, and involve thickening (Fig. 5) or thinning (Fig. 
8) of beds as a consequence of late-stage evolution in this 
zone. Note that the constraint of constant area is never 
relaxed. 

Additionally, our model assumes that deformation is 
completely accommodated by flexural slip (or flexural 
flow into the very small zones that undergo thickening or 
thinning) within the anticlines or, in other words, that no 
backshear or foreshear may be transmitted from the 
anticlines to the adjacent synclines. This point, that is 
often not taken into account in other models (Jamison, 
1987; Endignoux and Mugnier, 1990; Mosar and Suppe, 
1992; Mitra, 1992; Zoetemeijer and Sassi, 1992), seems to 
us particularly justified in thrust systems where, as in the 
example illustrated below, the synclines are very wide in 
comparison with the anticlines (see Martin and Mercier, 
1994). 

The balancing procedure allows the construction of 
successive geometries that are designated to simulate the 
natural tectonic process. The model is applied as follows: 
for each structure, the fault trajectory and the associated 
folding are defined a priori. The displacements are 
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Fig. 9. Graphs of ramp angle (a) versus forelimb dips (a*) and the 
thickness ratio (r) in the altered forelimb transported on a breakthrough 
thrust (dip =@, up to 60”) according to the equations (l), (4b), (12) and 
(13). The dotted area indicates the lack of solution (new fault 

dip > forelimb dip or < ramp dip). 
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Fig. 10. Graphs of ramp angle (a) versus forelimb dip (6) for different 
kinds of fault-related folds. These curves predict that there is no possible 
confusion of a fault-bend fold (mode I) with a fault-propagation fold 

(except if a is very close to 30”). 

subsequently input and the geometry of the intermediate 
stages calculated successively. A trial and error method 
allows the constructed geometry to be fitted to the field 
data as explained below. 

Natural example 

Geometric analyses of one set of thrust-related folds 
from the Atlas Mountains of North Africa (Outtani et al., 

1995) near the erogenic front at the vicinity of the 
Algeria-Tunisia boundary, illustrate the use and some 
limitations of the model. In this region, many kilometric 
scale, asymmetric fault-related folds are exposed and the 
elevation of a particular stratigraphic unit, (if it is not 
involved in the thrust related structures) is quite constant. 
The E-W trending folds are generally developed in the 
Mesozoic-Cenozoic cover and are characterised by steep 
or overturned forelimbs. The lithologic succession con- 
sists mainly of carbonate and sandstone with occurrence 
of shale and evaporites that provide potential dbcolle- 
ment levels. Tectonic transport is from north to south. 

Identification offault-propagation folds 

If we consider, following many authors (Suppe, 1983; 
Jamison, 1987; Endignoux and Mugnier, 1990) that the 
fault-bend fold model II (Fig. 1) is likely a theoretical 
concept without geological meaning, asymmetric fault- 
related folds, characterized by steep or overturned 
forelimbs, call to mind a FPF process. However, as 
explained by Marshak and Woodward (1988) and Mitra 
and Namson (1989), some natural folds, that exhibit 
forelimb dips of around 70”-80” and backlimb dips (and 
consequently ramp dips) of around 30” (see Fig. lo), 
could be interpreted as fault-bend folds (mode I) as well as 
FPF. The curves of Fig. 10 show that the dips of backlimb 
(CI) and forelimb (rc--CI) vary in the same direction for 
fault-bend folds and in opposite directions for FPF. In the 
field, a fold never holds exactly the same geometry along 
strike, and both backlimb dip and forelimb dip change. 
Depending on the nature of the backlimb dip and 
forelimb dip variations (in the same direction or in 
opposite directions), the studied fold can be identified as 
a fault-bend fold or a fault-propagation fold (Fig. 10). 

Use of the program 

The selected cross-section (Fig. 11) includes a pair of 
E-W trending kink-folds, well exposed near the Atlas 
front. The geometrical pattern of the folds (kink-like, 
with overturned forelimb and residual fold) suggests that 
the Kebouda and Safit el Ouk folds are, respectively, a 
breakthrough FPF and a transported-on-the-flat FPF. 
First, the trial and error method allows us to model a 
geometry fitting the field data (dips and heights of the 
surface structure and offset of the merging fault) for the 
frontal fold behind the pin point. The trial and error 
method used to fit the model to the data is basically the 



192 E. MERCIER, F. OUTTANI and D. FRIZON de LAMOTTE 

a 

- 

Fault-orooaaation 

transport on the flat 
Fault-propagation 

fold #2 

breakthrough 

Fig. 11. Location (a), surface and subsurface data (b), and kinematic evolution of the studied natural example (c). 

same as the one used to balance cross-sections by hand 
and to construct a deformed. and restored section. The 
parameters fixed by the trial and error method are (see the 
Appendix): depth to dtcollement (1); location, height and 
dip of the ramp (2, 3, 4); location and dip of the 
breakthrough thrust fault (5, 6); and lastly, non-accom- 
modated slip (7). Note that the identification as an FPF 
simplifies the balancing problem because the modelling 
of this kind of fold fixes both depth of the d&collement 
and slip along the dtcollement level (contrary to a fault- 
bend fold, Mitra and Namson, 1989; Endignoux and 
Mugnier, 1990). In some cases, the occurrence of a single 
FPF in a complex cross-section can fix the depth to 
detachment of the whole section (Outtani et al., 1995). 

CONCLUSIONS 

Compared to other computer-aided models (End- 
ignoux and Mugnier, 1990; Contreras and Sutter, 1990; 
Contreras, 1991; Zoetemeijer and Sassi, 1992), our 
approach mainly provides a balancing guideline for 
individual folds. Because it considers a wider variety of 
folding modes (and late stage alterations), its application 
to regional reconstruction clarifies the basic assumptions 
and enhances the reliability of balanced cross-sections. 

The modelling provides constraints on the geometry of 
the ramp, depth to dtcollement and slip values along this 
level (the slip accommodated in the fold is 1.5 km and 
non-accommodated slip is 1.3 km) (Fig. 11). These 
results have been used as input parameters in modelling 
of the rear fold. The value of slip behind the frontal fold 
(2.8 km) must be equal to the slip transmitted on the flat 
from the rear fold, and this flat must be at the same depth 
as the dtcollement beneath the frontal fold. In fact, the 
parameters fixed by the trial and error method are: depth 
to dCcollement (1); location, height and dip of the ramp 
(2, 3,4). The depth of the upper d&ollement (5) and the 
amount of non-accommodated slip (6), two other input 
parameters, are fixed in the studied case. This provides 
accurate constraints for modelling the rear fold and fixing 
the geometry of the ramp (the depth to dicollement) and 
the complete amount of slip. 

We wish to emphasise the following points concerning 
fault-propagation folding: FPF does not always require 
the complete accommodation of the deformation within 
the fold, but can transfer slip toward the front of the 
structure (transport on the flat process); consequently the 
stair-case geometry of thrust faults is not necessarily 
indicative of fault-bend folding and FPF can be the main 
(and perhaps only) fault-related folding process in large 
areas of some thrust systems. 
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APPENDIX 

The Rampe(EM) 2.1 .xprogram 

An interactive graphics software, Rampe(EM), was used to produce 
many figures of this paper. It is freely available from the first author. 
This program, compiled for the Macintosh computer, was developed 
using the above equations and procedures. It can also model fault-bend 
folds (modes I and II), using equations developed by Suppe 1983, 1985, 
and the folds of Chester and Chester (1990). The program uses the 
standard Macintosh interface using the mouse as the main input device. 
The program generates pictures of both sections before and after 
deformation and a table of numerical results. These output sheets can be 
printed or sent to the ‘clipboard’ in PICT format, so that pictures can be 
pasted into a drawing program in order to be completed and printed. 

During a typical session, the program runs as follows. Rampe(EM) 
requires that at least one bed be drawn in the cross-section. The 
stratigraphic ‘layer cake’ could be input from the keyboard in pixels 
(and saved in a stratigraphic file) or imported from such a file previously 
created. Then, if the FPF module is selected, the following input 
parameters are required: (1) depth to dtcollement, (2) height and (3) dip 
of the ramp; and (4) the non-accommodated slip. If the last parameter is 
zero, three output sheets are generated. If this parameter is not zero, the 
user must select a kind of late-stage evolution. In the case of transport 
on the flat, the output sheets are again generated. In the case of 
breakthrough, the program calculates the possible locations of the base 
of the new fault so that the new fault remains within the forelimb. Then 
this location must be specified. Depending on the location, the program 
calculates the range of possible dips of the new fault. The dip must then 
be specified and the three output sheets are then generated. 


